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443. The Study of -Electron Xtates by the Valence-bond Method. 
By C. ZAULI. 

By using Mulliken’s type of approximation in computing many-centre 
atomic integrals the standard valence-bond technique is modified to include 
overlap and exchange integrals of all orders. The range of applicability to 
x-electron energetics is extended and a procedure is indicated for cal- 
culating dipole and transition moments at the same time. 

By reference to an example the errors introduced by neglecting overlap and 
higher-order exchange integrals are discussed in relation to the more exact 
calculations by the new method. 

(I) IN the valence-bond method 192 the molecular wave-functions, characterizing each 
state of a many-electron system, are represented in a basis of “ structures,” i.e., many- 
electron functions corresponding to a distribution of ‘‘ bonds ’’ between a given set of 
atomic orbitals ai(ri; €Ii; +J, whose form will be supposed to be quite general. 

These “ structures ” are linear combinations of determinantal wave-functions (1) : 

A ,  = (a!)“ det. I iilcZZ . . . a, I , , . . . . . (1) 
where the bar indicates p-spin. 
for a many-electron problem is a linear combination of integrals (2) 

It follows that each matrix element of the secular equation 

AiFAjdT (AiFAj) . . . . . . . . (2) I 
where the operator F is either the Hamiltonian H or the unit operator. 

To make the calculation, the integrals (2) must be expanded in exchange integrals 
of all orders, and then expressed in terms of atomic integrals. 

As a result, the complexity of an %-electron problem increases very rapidly with n, and, 
if the usual x-approximation is adopted, only a few molecules can be comprehensively 
studied. For instance, even if only “ structures ” with one charge separation at the 
most are considered (and this is not an assumption made later in this paper), the number 
of integrals (2) which occur in an %-electron problem and in the absence of symmetry is 
given by: (rn + nf,-2)2 where rk = K ! / [ ( k / 2 )  !I2 
and bearing in mind that each integral (2) yields [(n/2)!I2 exchange integrals it is readily 
seen that the order of complexity with which one can reasonably expect to cope is given 
by n < 4. To overcome these difficulties a number of approximations is usually adopted 
(for example, the neglect of exchange integrals of order higher than the second), but 
none is really satisfactory. 

In what follows a method will be described in which the complexity of the valence- 
bond technique * is reduced by assuming only the validity of Mulliken’s approximation 
in computing many-centre atomic integrals. 

The types of Mulliken’s approximations employed here are : 

* Another kind of approach, in which however the chemical analogy of the valence-bond method is 

1 Eyring, Walter, and Kimball, “ Quantum Chemistry,” J. Wiley, New York, Chap. 13. 

3 Mulliken, J .  Chinz. phys., 1949, 46, 500, 521. 

lost, has been used by M~Weeny.~  

Pauling and Wilson, ‘‘ Introduction to  Quantum Mechanics,” McGraw-Hill, New York, Chap. 13. 

RlcWeeny, Proc. Roy. SOL, 1954, A ,  223, 306. 
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V ,  being the nuclear potential of atom r with Y # k ,  I and Skl the overlap integral of 

The symbol +i has been used here to denote the sub-group of the class of functions 

(i) the di's form an orthonormal and complete set around one centre. 
A theoretical justification for Mulliken's approximation has been given by Ruedenberg : 

the cases relevant to the present study are discussed in the Appendix. 
Eqn. (2) can be written in the form: 

+k and + l .  

ai which satisfy the following condition : 

the upper row representing Ad, the lower Aj, and the atomic orbitals with F-spin grouped 
together on the left-hand side of the parenthesis: here Pj is the number of permutations 
which, when applied to the lowest row of (5), gives the standard form of A,.* For con- 
venience, (-1)-p+4iFAj) will be used in the following. 

When F = 1 it is always possible to factorise eqn. (5) in two terms,6 each a function 
only of atomic orbitals with the same spin: 

When F = H such a factorization is no longer possible but by using eqns. (3) and (4) a 
formula analogous to (6) can be obtained. 

only, will be defined as 
follows: 

For this purpose a function  TI^^, which contains +x: and 

1 
Tkl  = sl [($'kvk+l) + ('#kv&) + (h I -A I #Z)] - i [ ( # k  I -A $- V k  I $k) + 

1 
(+i I --' + V l  I #l) + ( # k V l h )  + (hvk$l)  + (bh I #&)I + 2 i j l  (4th I #&) (7) 

here (+it - A + Vi I+i) = (+iI -A l+i) + (+iVi$i> - + - * (8) 
A is the kinetic-energy operator. 

(2) may be written as: 
It can be seen that by using eqns. (3) and (4) any exchange integral (EI) derived from 

EI = sass[(ej + ei + 24/21 + s ~ ~ ~ ( T ~ ~  + T~~ + . . . + T ~ ~ )  . . (9) 
where Qi and Qj are the coulomb integrals of the " structures " t o  which Ai and Aj electron 
respectively belong, T's subscripts represent atomic orbitals occupied by the same electron 
and s, (with t ~ .  = cc, (3) the product of overlap integrals among the atomic orbitals with 
the same spin function occurring in the exchange integral, so that sass = S ,  S being the 
value of the exchange integral when F = 1. Here k (see p. 2206 for its complete definition) 
is a function which depends only upon the atomic orbitals not contained in both rows of 
eqn. (5), thus being the same for all exchange integrals derived from an integral (2). Since 
Tkl= 0 when k = I ,  atomic orbitals not involved in the exchange do not appear in 
expression (9). 

Now, when T's derived from atomic orbitals with the same spin function are grouped 
together, eqn. (9) becomes: 

EI = Sc(S16[(Qi + Qj + 2 ~ ) / 2 1  + s a ( s p ~ p )  + s P ( S c r ~ c r )  . . . . (10) 
* The standard form of A,  is referred to the primary choice of the order in which the atomic orbitals 

are arranged in expression (1) .  
Ruedenberg, J .  Chem. Phys., 1951, 19, 1433. 
Mangini and Zauli, J.. 1956, 4960, 
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and the sum over all the exchange integrals derived from (2) leads to equation (11) : 

(-l)-pj(AiHAj) = SaSb[(Qi + Qj + 2k)/2] + SEHb + SbH, . . (11) 
where HF has the form 

PF being the number of permutations among the atomic orbitals with the same spin 
function. 

The form of the K-function will now be specified: when Ai and Aj differ in one atomic 
orbital (q., +r in Aj is absent in At and replaced by + p )  its form is given by (13) : 

kr,, = QP(+r+r I +p+p) - (+& I + d r )  - ( + d p  I +p+p)I * * - (13) 

If Ai and Aj differ in two atomic orbitals (e.g., +r and +s in Aj replaced by +p and +q in 
Ai) the k-function is given by (13a) : 

kTs,pq = kT,p + ks,, + &[(+P+p I+&+.>> + I +r+r) - ( M T  I +A) - (+r+r I ds$s)I (13a) 

the last term appearing in order to ensure the invariance of (13n) under an exchange of 
+r with +s (or +p with t&). Eqns. ( l l ) ,  (13), and (13a) show that, when the charge dis- 
tributions in the structures, to which A; and Aj belong, differ, the mean value of the 
coulombic integral is (Qi + Qj  + 2k)/2; moreover, since k is always negative the energy 
is lowered by an amount that increases with the distance of the negative centres in Ai 
and Aj, if both belong to polar structures, or with the displacement of negative charge, 
if either Ai or Aj belongs to a covalent structure. 

(11) So far the use of eqn. (4) has been restricted by the condition Y # k, I (see Appendix). 
Now the case in which the approximation (14) is adopted will be discussed: 

Substituting (14) in eqn. (8) gives eqn. (15): 

Now eqn. (15) is no longer invariant to exchange of k with 1." This means that the 
hermitean character of (AiHAj) is lost,? therefore when approximation (14) is employed 
it is necessary to compute both (&HA,.) and (AiHAj) because they are now different. 
However, by defining a new integral 

(AiHAj) =&[(AiHAj) + (AjHAi)] . . . . . * (16) 
it is possible to avoid doubling the computation, if eqn. (17) is used instead of (7) : 

(-l)-pj(AiHAj) = SaSp[(Qi + Qj + 2k)/2] + SaH~ + SBH~ . . . (17) 

in which 
by the new T's defined as follows: 

is formally the same as given by expression (11) when the T's are replaced 

* Only when $k and $I are exactly equivalent does the relation T ~ I  = T l k  still hold. 
-f The problem that here arises is the same as that discussed by Moffitt 7 in the method of " Atoms 

7 Moffitt, Proc. Roy. SOC., 1951, A ,  210, 261. 
in Molecules." 



[1960] States by  the Valence-bond Method.  2207 
Since the matrix element in the secular equations always contain terms such as (16) 

(111) If, instead of dealing with the Hamiltonian operator H, we are concerned with 
the use of eqn. (17) is justified. 

a one electron-operator M the factorization of an integral 

(AiMAj) = &[(A&4j) + (AjMAi)] . . . . . . .  
can be accomplished without loss in accuracy as in the case M = 1. 

co-ordinates) a procedure similar to outlined for H may be followed. 
N X . 1  functions (corresponding to the Fkis)  written as: 

When dealing with a more general case (for instance, when M represents electron 
In fact, by using 

in the way described in (I) we can derive an equation corresponding to (11) or (18) which 
has the form 

The Mp’s are of the same form as HLs in which the Fs are substituted by the K’s and the 
substitution = &(Qi + Qj) is made, Qk being the coulomb integral with H replaced 
by M. 

(IV) In order to make the calculations for an eigen-value problem once the atomic 
integrals have been tabulated, the procedure is as follows : first the T’s have to be computed 
for all possible pairs of atomic orbitals by using eqn. (7). The second step consists in 
calculating S, and Hcl by using eqn. (12). It is worth noticing that eqn. (12) gives the 
S, values also provided that the sum of T k l  is put equal to unity in each permutation P,. 
The number of H,’s (or S,’s) which have to be calculated is generally related to the sym- 
metry of the molecule but is always very much less than the number of integrals (2) 
occurring in a given problem. Moreover the number of permutations Pp is the square 
root of those occurring in the expansion of eqn. (2) .  This extends the range of applic- 
ability to n = 6 and possibly, in some favourable cases where a high degree of symmetry 
is present, to n = 8. 

The final step consists in the tabulation of integrals (2) by using expression (11) after 
the k-functions have been calculated with eqns. (13) and (13a). From here the procedure 
follows the standard pattern: it is possible to introduce all the structures desired, since 
their energies are merely a sum of integrals (2). Each matrix element can be obtained 
and the solution of the secular equations gives energy values and the corresponding mole- 
cular wave-functions. On the other hand, the similarity between eqns. (11) and (21) 
suggests that it may be possible to carry out a t  the same time and with only a little extra 
labour the calculation of dipole moments in the different states and transition moments. 
There exists then the possibility of checking readily the degree of accuracy of the wave 

functions obtained, by comparison with experimental data such as dipole 
moments and oscillator strengths. 

(V) It is of interest to get an approximate idea of the effect of 
neglecting overlap integrals and exchange integrals of order higher than the 
second in the energy of a state. In  the simple case of the 4-equivalent 

(-l)-pj(AiMAj) = S,Sa&+ SaMp + SJ& . . . . . . (21) 

( I )  
x-electron problem as shown in (I), the energy corresponding to the “ structure ” #&cd1y2 is 

(22) 

J 

If overlap integrals and exchange integrals of order higher than the second are neglected, 
then eqn. (23) is obtained: 

E = Q + 2 ~ - - - $ 7 - $ 8 .  . . , . . . (23) 
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where a, p, y, and 3 are the second-order exchange integrals as indicated in (I). On the 
other hand, a complete calculation by the proposed method, which makes it possible to 
express high-order exchange integrals in second-order exchange integrals, leads to the 
results : 

E, = Q + 1 . 9 ~  - 1.5p - 0.57 - 1.333 . . . . . (24) 
Ek = Q + 1 . 7 ~  - 2.2p - 0 . 5 ~  - 1.156 . . . . . (24a) 

where the subscripts s and k refer to calculations made with an exponential factor for the 
2fi,-atomic orbitals of 1.625 and 1.044 (Slater's and Kohlrausch's value respectively) for 
the carbon atom. Here the coefficients of the exchange integrals depend on the exponential 
factor chosen, partly because the normalisation coefficient in expression (22) is no longer 
unity and partly because the expansion of high-order in terms of second-order exchange 
integrals is a function of the overlap integrals among the various atomic orbitals. For 

instance, by applying eqn. (9) to the exchange integral (;:it) the following result is 

obtained : 

(g:;:) - S a b 4 Q  = 2sab2[K - s , b 2 Q ]  . . . . . . (25) 

Now E - E,= AE,= 0 . 1 ~  + 1.5p + O . S S  . . . . . (26) 

E - Ek = AEk = 0 . 3 ~  + 1*2p + 0.6s . . . . . (264 

From (26) and (26a) it can be seen that neglecting overlap and higher-order exchange 
integrals leads, for the case under consideration to: (i) an overestimate of the exchange 
energy to an extent depending upon the exponential factor value, the error being in inverse 
relation to it (a rough calculation showed that AEs is -10% and AEk -50% of the total 
exchange energy), and (ii) an overestimate of the contribution by neighbouring electrons 
to the exchange energy and a large underestimate of second- and third-neighbour electrons. 

(VI) Conclusions.-The technique presented possesses some advantages which are 
summarized as follows. 

(1) The only approximation used is Mulliken's and accordingly the error in the de- 
termination of x-energies is likely to be small," of the order of some tenths of an ev. 
Moreover, its theoretical meaning is not vague,5 but represents a first stage of a series 
development (see Appendix). (2) It makes possible the introduction of all the exchange 
integrals deriving from expression (2) with comparatively little computation. (3) The 
range of applicability is extended. (4) Dipole and transition moments can be calculated 
a t  the same time, providing a check on the wave-functions obtained. 

APPENDIX 
The atomic functions +k appearing in (3) and (4) may be written 

+ k ( f i ,  I ,  m) = &z,l(yk)yZrn(eh 4 k )  - * - - - - * (27) 
The Yl, are spherical harmonics and, if the internuclear axis for a chosen pair of atoms is the 
z axis we have, for the x electrons, m # 0. Now suppose we represent by +ki a complete set of 
functions centred a t  nucleus k, where the superscript i stands for the set of quantum numbers 
n, I, and m. We shall continue to denote by +k the chosen function belonging to the set of +ki 
concerned in x-bonding at  k.  

Then : +k = $ S(+& 41z)+Ii and +I =.f S(+L +ki)+ki * * * (28) 

+k+Z = is(+,; +!)[+I& + +&I + -& [ s ( + k ;  +li)+k+li + S(+z; +ki)+ki+L1 * 

i = O  5 = 0  

with S(+ki; +$) = +ki+fdT 

so that (29) 
r = O  

* Some kind of approximation is always used when computing many-centre integrals. 
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where the largest term in most problems is the one abstracted from the sum, and the primed 
summation sign omits the term concerned. 

Since S(q5ki, #) = 0 for mki # mlj, and since also 'yiz # 0, many terms vanish and the neglect 
of all but the first term in expression (29) should leave a close approximation.3~8 

In could be interesting to assess the accuracy of eqn. (3) and (4) in the particular case of 
equicentre, Slater's atomic orbitals $k = (2'1,l)k and 41 = (2,1,1)l (which is the most frequent 
to occur in n-electron problems) and the importance of higher terms in eqn. (29)' in this case 
expected to be : 

QS(2rk; 3 ~ ~ ) [ ( 2 x i 3 x i )  + (2xk3ni)l + iS(2xk;  3%)[(2xk3&) + ( 2 d % ) ' J  . (30)  
for n r k  = #k(n,lJl)k and n 6 k  = +k(n,Z,l)k. 

A t  present this is not feasible, since the two-centre integrals originated by including 
expression (30) in the expansion of an electron-repulsion or potential-energy integral are not 
to be found in the literature. Moreover, only two-centre integrals involving 2x Slater's atomic 
orbitals are tabulated, so that an accuracy test of eqns. (3) and (4) would be possible only in 
this limiting case where Mulliken's type of approximation is expected to be a t  its worst since 
monocentric integrals will appear and their values are very. unlikely to fall off rapidly with 
increasing quantum number. However, by using a few reasonable assumptions to estimate 
the values of some integrals involving 3x and 36 atomic orbitals, the contribution to the value 
of the two-centre repulsion integrals (2x$x1 I 2xk2xk) and (2nk2xl I 2xk2xz), due to the inclusion 
of (30) in addition to the first term of eqn. (29), has been computed. The results are collected 
in Table 1 : the entries Z1(2rc) are the values obtained by using only the first term of eqn. (29), 
viz., by using Mulliken's approximation. Zd1(3x) is the increment due to including the 3$x: 
function, and Z1(36) due t o  including 3dx. Z-l(ht) is the lumped contribution by higher terms. 
The difference between the exact value of the integral and (2x) is also given and indicated by A. 

TABLE 1. 

ZR/2 2 3 4 5 2 3 4 5 
2-'A ......... 0.0013 0.0005 -0.0006 -0.0011 0.0026 0.0018 0.0007 0.0002 
2-1(277) ...... 0.1230 0.0764 0.0436 0.0235 0.0854 0.0358 0.0125 0.0039 
2- ' (3~)  ...... -0.0126 -0.0161 -0.0155 -0.0129 -0.0151 -0.0122 -0.0056 -0.0015 
2-1(36) ...... 0.0052 0.0058 0.0051 0.0038 0.0076 0.0059 0.0031 0.0014 
Z-l(ht) ...... 0.0087 0.0109 0.0098 0.0070 0.0088 0.0089 0.0042 0.0009 

(2Tk20 I 27Tkhk) (2Tk2nI A I 277k2nZ) 
I > I \ 

From this Table the following points arise: (1) The contributions by terms after the first in 
expressions (29) and (30) decrease rapidly. Moreover, the error A involved in using eqn. (3) 
is small in the region of main interest. (2) The error in the examples considered does not 
decrease monotonically on including more terms, but oscillates owing to the negative contri- 
bution of the 3x-atomic orbital (here orthogonalized to the 2x) .  (3) The estimated contribution 
by still higher terms with n > 3 is not therefore necessarily small, although it must fall off 
rapidly with increasing principal quantum number. 

Some calculations were also made for (2xk2x~ I 2rj2xj) with K ,  h, j equidistant and are reported 
in Table 2. They suggest that the error of Mulliken's approximation is generally similar, and 
probably smaller than, for two-centre cases. 

TABLE 2. 
( 2 d h  I 27rj24 

ZRl2 2 3 4 5 
2-1(27r) ..................... 0.1100 0.0636 0.0310 0.0149 

Z-'(36) ..................... 0.0048 0-0047 0-0036 0.0025 
Z- l (3~)  ..................... -0.0093 -0.0079 -0*0038 -0*0006 
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